Перевод: с английского на все языки

со всех языков на английский

exploit an invention

  • 1 exploit an invention

    Универсальный англо-русский словарь > exploit an invention

  • 2 exploit an invention

    English-Ukrainian law dictionary > exploit an invention

  • 3 to exploit an invention

    Patent terms dictionary > to exploit an invention

  • 4 invention

    сущ.
    1) общ. открытие, изобретение (установление неизвестных ранее объективно существующих закономерностей или явлений окружающего мира, а также способов организации материи или человеческой деятельности для получения какого-л. практического результата)
    Syn:
    See:
    2) пат. изобретение (новое техническое решение задачи, поднимающее существующий уровень техники)
    See:

    Англо-русский экономический словарь > invention

  • 5 exploit

    експлуатувати, піддівати експлуатації; використовувати
    - exploit child labor
    - exploit female and child labor
    - exploit monopoly position
    - exploit religious sentiments
    - exploit the labor of others

    English-Ukrainian law dictionary > exploit

  • 6 exploit

    использовать, применять
    - exploit an invention
    - exploit a patent

    Patent terms dictionary > exploit

  • 7 Lee, Revd William

    SUBJECT AREA: Textiles
    [br]
    d. c. 1615
    [br]
    English inventor of the first knitting machine, called the stocking frame.
    [br]
    It would seem that most of the stories about Lee's invention of the stocking frame cannot be verified by any contemporary evidence, and the first written accounts do not appear until the second half of the seventeenth century. The claim that he was Master of Arts from St John's College, Cambridge, was first made in 1607 but cannot be checked because the records have not survived. The date for the invention of the knitting machine as being 1589 was made at the same time, but again there is no supporting evidence. There is no evidence that Lee was Vicar of Calverton, nor that he was in Holy Orders at all. Likewise there is no evidence for the existence of the woman, whether she was girlfriend, fiancée or wife, who is said to have inspired the invention, and claims regarding the involvement of Queen Elizabeth I and her refusal to grant a patent because the stockings were wool and not silk are also without contemporary foundation. Yet the first known reference shows that Lee was the inventor of the knitting machine, for the partnership agreement between him and George Brooke dated 6 June 1600 states that "William Lee hath invented a very speedy manner of making works usually wrought by knitting needles as stockings, waistcoats and such like". This agreement was to last for twenty-two years, but terminated prematurely when Brooke was executed for high treason in 1603. Lee continued to try and exploit his invention, for in 1605 he described himself as "Master of Arts" when he petitioned the Court of Aldermen of the City of London as the first inventor of an engine to make silk stockings. In 1609 the Weavers' Company of London recorded Lee as "a weaver of silk stockings by engine". These petitions suggest that he was having difficulty in establishing his invention, which may be why in 1612 there is a record of him in Rouen, France, where he hoped to have better fortune. If he had been invited there by Henry IV, his hopes were dashed by the assassination of the king soon afterwards. He was to supply four knitting machines, and there is further evidence that he was in France in 1615, but it is thought that he died in that country soon afterwards.
    The machine Lee invented was probably the most complex of its day, partly because the need to use silk meant that the needles were very fine. Henson (1970) in 1831 took five pages in his book to describe knitting on a stocking frame which had over 2,066 pieces. To knit a row of stitches took eleven separate stages, and great care and watchfulness were required to ensure that all the loops were equal and regular. This shows how complex the machines were and points to Lee's great achievement in actually making one. The basic principles of its operation remained unaltered throughout its extraordinarily long life, and a few still remained in use commercially in the early 1990s.
    [br]
    Further Reading
    J.T.Millington and S.D.Chapman (eds), 1989, Four Centuries of Machine Knitting, Commemorating William Lee's Invention of the Stocking Frame in 1589, Leicester (N.Harte examines the surviving evidence for the life of William Lee and this must be considered as the most up-to-date biographical information).
    Dictionary of National Biography (this contains only the old stories).
    Earlier important books covering Lee's life and invention are G.Henson, 1970, History of the Framework Knitters, reprint, Newton Abbot (orig. pub. 1831); and W.Felkin, 1967, History of the Machine-wrought Hosiery and Lace Manufactures, reprint, Newton Abbot (orig. pub. 1867).
    M.Palmer, 1984, Framework Knitting, Aylesbury (a simple account of the mechanism of the stocking frame).
    R.L.Hills, "William Lee and his knitting machine", Journal of the Textile Institute 80(2) (a more detailed account).
    M.Grass and A.Grass, 1967, Stockings for a Queen. The Life of William Lee, the Elizabethan Inventor, London.
    RLH

    Biographical history of technology > Lee, Revd William

  • 8 Bowser, Sylvanus F.

    [br]
    fl. 1880s
    [br]
    American mechanic and inventor of the first fuel-dispensing pump.
    [br]
    Bowser lived and worked in Fort Wayne, Texas. In 1885 he was approached by a local storekeeper, Jake Gumper, who had been receiving complaints from some of his customers. Gumper's store stocked both kerosene (lamp oil) and butter, and the two were stored alongside each other; the kerosene cask leaked and tainted the butter. Gumper consulted Bowser, but neither of them considered the obvious idea of moving the two containers further apart; instead, working in an adjacent barn, Bowser set about devising a means of dispensing kerosene in given quantities.
    He delivered his invention to Gumper on 5 September 1885. It was a circular tank with a cylinder soldered inside and an outlet pipe attached to the top. A hand-operated piston controlled two marble valves and wooden plungers which were fitted inside the cylinder. When the wooden handle was raised, a gallon of kerosene flowed from the tank into the cylinder, and when the handle was lowered the liquid was discharged.
    He formed S.F.Bowser \& Co. of Fort Wayne to exploit his invention, and twenty years later the company was producing pumps for motor spirit. In 1925 the Bowser Red Sentry, which registered quantity on a clock dial, was introduced. The first automatic "Bowser" in Britain was put into operation in a Manchester garage in 1921.
    [br]
    Further Reading
    P.Robertson, 1974, The Shell Book of Firsts, London: Ebury Press \& Michael Joseph.
    IMcN

    Biographical history of technology > Bowser, Sylvanus F.

  • 9 Cockerell, Christopher Sydney

    [br]
    b. 4 June 1910 Cambridge, England
    [br]
    British designer and engineer who invented the hovercraft.
    [br]
    He was educated at Gresham's School in Holt and at Peterhouse College, Cambridge, where he graduated in engineering in 1931; he was made an Honorary Fellow in 1974. Cockerell entered the engineering firm of W.H.Allen \& Sons of Bedford as a pupil in 1931, and two years later he returned to Cambridge to engage in radio research for a further two years. In 1935 he joined Marconi Wireless Telegraph Company, working on very high frequency (VHF) transmitters and direction finders. During the Second World War he worked on airborne navigation and communication equipment, and later he worked on radar. During this period he filed thirty six patents in the fields of radio and navigational systems.
    In 1950 Cockerell left Marconi to set up his own boat-hire business on the Norfolk Broads. He began to consider how to increase the speed of boats by means of air lubrication. Since the 1870s engineers had at times sought to reduce the drag on a boat by means of a thin layer of air between hull and water. After his first experiments, Cockerell concluded that a significant reduction in drag could only be achieved with a thick cushion of air. After experimenting with several ways of applying the air-cushion principle, the first true hovercraft "took off" in 1955. It was a model in balsa wood, 2 ft 6 in. (762 mm) long and weighing 4½ oz. (27.6 g); it was powered by a model-aircraft petrol engine and could travel over land or water at 13 mph (20.8 km/h). Cockerell filed his first hovercraft patent on 12 December 1955. The following year he founded Hovercraft Ltd and began the search for a manufacturer. The government was impressed with the invention's military possibilities and placed it on the secret list. The secret leaked out, however, and the project was declassified. In 1958 the National Research and Development Corporation decided to give its backing, and the following year Saunders Roe Ltd with experience of making flying boats, produced the epoch-making SR N1, a hovercraft with an air cushion produced by air jets directed downwards and inwards arranged round the periphery of the craft. It made a successful crossing of the English Channel, with the inventor on board.
    Meanwhile Cockerell had modified the hovercraft so that the air cushion was enclosed within flexible skirts. In this form it was taken up by manufacturers throughout the world and found wide application as a passenger-carrying vehicle, for military transport and in scientific exploration and survey work. The hover principle found other uses, such as for air-beds to relieve severely burned patients and for hover mowers.
    The development of the hovercraft has occupied Cockerell since then and he has been actively involved in the several companies set up to exploit the invention, including Hovercraft Development Ltd and British Hovercraft Corporation. In the 1970s and 1980s he took up the idea of the generation of electricity by wavepower; he was Founder of Wavepower Ltd, of which he was Chairman from 1974 to 1982.
    [br]
    Principal Honours find Distinctions
    Knighted 1969. CBE 1955. FRS 1967.
    LRD

    Biographical history of technology > Cockerell, Christopher Sydney

  • 10 Robert, Nicolas Louis

    SUBJECT AREA: Paper and printing
    [br]
    b. 2 December 1761 Paris, France
    d. 8 August 1828 Dreux, France
    [br]
    French inventor of the papermaking machine.
    [br]
    Robert was born into a prosperous family and received a fair education, after which he became a lawyer's clerk. In 1780, however, he enlisted in the Army and joined the artillery, serving with distinction in the West Indies, where he fought against the English. When dissatisfied with his prospects, Robert returned to Paris and obtained a post as proof-reader to the firm of printers and publishers owned by the Didot family. They were so impressed with his abilities that they promoted him, c. 1790, to "clerk inspector of workmen" at their paper mill at Essonnes, south of Paris, under the control of Didot St Leger.
    It was there that Robert conceived the idea of a continuous papermaking machine. In 1797 he made a model of it and, after further models, he obtained a patent in 1798. The paper was formed on a continuously revolving wire gauze, from which the sheets were lifted off and hung up to dry. Didot was at first scathing, but he came round to encouraging Robert to make a success of the machine. However, they quarrelled over the financial arrangements and Robert left to try setting up his own mill near Rouen. He failed for lack of capital, and in 1800 he returned to Essonnes and sold his patent to Didot for part cash, part proceeds from the operation of the mill. Didot left for England to enlist capital and technical skills to exploit the invention, while Robert was left in charge at Essonnes. It was the Fourdrinier brothers and Bryan Donkin who developed the papermaking machine into a form in which it could succeed. Meanwhile the mill at Essonnes under Robert's direction had begun to falter and declined to the point where it had to be sold. He had never received the full return from the sale of his patent, but he managed to recover his rights in it. This profited him little, for Didot obtained a patent in France for the Fourdrinier machine and had two examples erected in 1814 and the following year, respectively, neatly side-tracking Robert, who was now without funds or position. To support himself and his family, Robert set up a primary school in Dreux and there passed his remaining years. Although it was the Fourdrinier papermaking machine that was generally adopted, it is Robert who deserves credit for the original initiative.
    [br]
    Further Reading
    R.H.Clapperton, 1967, The Papermaking Machine, Oxford: Pergamon Press, pp. 279–83 (provides a full description of Robert's invention and patent, together with a biography).
    LRD

    Biographical history of technology > Robert, Nicolas Louis

  • 11 Ashley, Howard Matravers

    [br]
    b. 1841
    d. 1914 England
    [br]
    English inventor of the semi-automatic bottle-making machine.
    [br]
    Ashley, manager of an iron foundry at Ferrybridge, Yorkshire, began trying to construct a bottle-making machine in the 1880s. In 1886 he obtained a patent for a two-stage machine. This proved to be impracticable, but improvements were described in further patents in 1887 and 1889, leading to a three-stage process, embodying the basic elements of a machine to make narrow-necked glass bottles. The Ashley (Machine-Made) Bottle Company was set up to exploit the invention, but had failed by 1894 due to poor management, although it had claimed to make bottles in a tenth of the time taken to make them by hand. Ashley had shown the way, however, and his machines were still producing good bottles in 1918. The process was a stage along the way to complete mechanization brought about by M.J. Owens's machine.
    [br]
    Bibliography
    Ashley took out nine British patents during 1886–90, including: 2 July 1886, British patent no. 8,677 (two-stage bottle-making machine).
    Further Reading
    R.E.Moody, 1985, "A century of mechanical bottle making", Glass Technology 26 (2): 109 ff.
    LRD

    Biographical history of technology > Ashley, Howard Matravers

  • 12 Demenÿ, Georges

    [br]
    b. 1850 Douai, France d. 1917
    [br]
    French chronophotographer.
    [br]
    As a young man Georges Demenÿ was a pioneer of physical education in France, and this led him to contact the physiologist Professor Marey in 1880. Marey had made a special study of animal movement, and Demenÿ hoped to work with him on research into physiological problems related to gymnastics. He joined Marey the following year, and when in 1882 the Physiological Station was set up near Paris to develop sequence photography for the study of movement. Demenÿ was made Head of the laboratory. He worked with the multiple-image fixed-plate cameras, and was chiefly responsible for the analysis of the records, having considerable mathematical and graphical ability. He also appeared as the subject in a number of the sequences. When in 1888 Marey began the development of a film camera, Demenÿ was involved in its design and operation. He became interested in the possibility of using animated sequence photographs as an aid to teaching of the deaf. He made close-up records of himself speaking short phrases, "Je vous aime" and "Vive la France" for example, which were published in such journals as Paris Photographe and La Nature in 1891 and 1892. To present these in motion, he devised the Phonoscope, which he patented on 3 March 1892. The series of photographs were mounted around the circumference of a disc and viewed through a counter-rotating slotted disc. The moving images could be viewed directly, or projected onto a screen. La Nature reported tests he had made in which deaf lip readers could interpret accurately what was being said. On 20 December 1892 Demenÿ formed a company, Société Générale du Phonoscope, to exploit his invention, hoping that "speaking portraits" might replace family-album pictures. This commercial activity led to a rift between Marey and Demenÿ in July 1893. Deprived of access to the film cameras, Demenÿ developed designs of his own, patenting new camera models in France on 10 October 1893 and 27 July 1894. The design covered by the latter had been included in English and German patents filed in December 1893, and was to be of some significance in the early development of cinematography. It was for an intermittent movement of the film, which used an eccentrically mounted blade or roller that, as it rotated, bore on the film, pulling down the length of one frame. As the blade moved away, the film loop so formed was taken up by the rotation of the take-up reel. This "beater" movement was employed extensively in the early years of cinematography, being effective yet inexpensive. It was first employed in the Chronophotographe apparatus marketed by Gaumont, to whom Demenÿ had licensed the patent rights, from the autumn of 1896. Demenÿ's work provided a link between the scientific purposes of sequence photography— chronophotography—and the introduction of commercial cinematography.
    [br]
    Further Reading
    J.Deslandes, 1966, Histoire comparée du cinéma, Vol. I, Paris. B.Coe, 1992, Muybridge and the Chronophotographers, London.
    BC

    Biographical history of technology > Demenÿ, Georges

  • 13 Sholes, Christopher Latham

    SUBJECT AREA: Paper and printing
    [br]
    b. 14 February 1819 Mooresburg, Pennsylvania, USA
    d. 17 February 1890 USA
    [br]
    American inventor of the first commercially successful typewriter.
    [br]
    Sholes was born on his parents' farm, of a family that had originally come from England. After leaving school at 14, he was apprenticed for four years to the local newspaper, the Danville Intelligencer. He moved with his parents to Wisconsin, where he followed his trade as journalist and printer, within a year becoming State Printer and taking charge of the House journal of the State Legislature. When he was 20 he left home and joined his brother in Madison, Wisconsin, on the staff of the Wisconsin Enquirer. After marrying, he took the editorship of the Southport Telegraph, until he became Postmaster of Southport. His experiences as journalist and postmaster drew him into politics and, in spite of the delicate nature of his health and personality, he served with credit as State Senator and in the State Assembly. In 1860 he moved to Milwaukee, where he became Editor of the local paper until President Lincoln offered him the post of Collector of Customs at Milwaukee.
    That position at last gave Sholes time to develop his undoubted inventive talents. With a machinist friend, Samuel W.Soule, he obtained a patent for a paging machine and another two years later for a machine for numbering the blank pages of a book serially. At the small machine shop where they worked, there was a third inventor, Carlos Glidden. It was Glidden who suggested to Sholes that, in view of his numbering machine, he would be well equipped to develop a letter printing machine. Glidden drew Sholes's attention to an account of a writing machine that had recently been invented in London by John Pratt, and Sholes was so seized with the idea that he devoted the rest of his life to perfecting the machine. With Glidden and Soule, he took out a patent for a typewriter on June 1868 followed by two further patents for improvements. Sholes struggled unsuccessfully for five years to exploit his invention; his two partners gave up their rights in it and finally, on 1 March 1873, Sholes himself sold his rights to the Remington Arms Company for $12,000. With their mechanical skills and equipment, Remingtons were able to perfect the Sholes typewriter and put it on the market. This, the first commercially successful typewriter, led to a revolution not only in office work, but also in work for women, although progress was slow at first. When the New York Young Women's Christian Association bought six Remingtons in 1881 to begin classes for young women, eight turned up for the first les-son; and five years later it was estimated that there were 60,000 female typists in the USA. Sholes said, "I feel that I have done something for the women who have always had to work so hard. This will more easily enable them to earn a living."
    Sholes continued his work on the typewriter, giving Remingtons the benefit of his results. His last patent was granted in 1878. Never very strong, Sholes became consumptive and spent much of his remaining nine years in the vain pursuit of health.
    [br]
    Bibliography
    23 June 1868, US patent no. 79,265 (the first typewriter patent).
    Further Reading
    M.H.Adler, 1973, The Writing Machine, London: Allen \& Unwin.
    LRD

    Biographical history of technology > Sholes, Christopher Latham

  • 14 Galilei, Galileo

    [br]
    b. 15 February 1564 Pisa, Italy
    d. 8 January 1642 Arcetri, near Florence, Italy
    [br]
    Italian mathematician, astronomer and physicist who established the principle of the pendulum and was first to exploit the telescope.
    [br]
    Galileo began studying medicine at the University of Pisa but soon turned to his real interests, mathematics, mechanics and astronomy. He became Professor of Mathematics at Pisa at the age of 25 and three years later moved to Padua. In 1610 he transferred to Florence. While still a student he discovered the isochronous property of the pendulum, probably by timing with his pulse the swings of a hanging lamp during a religious ceremony in Pisa Cathedral. He later designed a pendulum-controlled clock, but it was not constructed until after his death, and then not successfully; the first successful pendulum clock was made by the Dutch scientist Christiaan Huygens in 1656. Around 1590 Galileo established the laws of motion of falling bodies, by timing rolling balls down inclined planes and not, as was once widely believed, by dropping different weights from the Leaning Tower of Pisa. These and other observations received definitive treatment in his Discorsi e dimostrazioni matematiche intorno a due nuove scienzi attenenti alla, meccanica (Dialogues Concerning Two New Sciences…) which was completed in 1634 and first printed in 1638. This work also included Galileo's proof that the path of a projectile was a parabola and, most importantly, the development of the concept of inertia.
    In astronomy Galileo adopted the Copernican heliocentric theory of the universe while still in his twenties, but he lacked the evidence to promote it publicly. That evidence came with the invention of the telescope by the Dutch brothers Lippershey. Galileo heard of its invention in 1609 and had his own instrument constructed, with a convex object lens and concave eyepiece, a form which came to be known as the Galilean telescope. Galileo was the first to exploit the telescope successfully with a series of striking astronomical discoveries. He was also the first to publish the results of observations with the telescope, in his Sidereus nuncius (Starry Messenger) of 1610. All the discoveries told against the traditional view of the universe inherited from the ancient Greeks, and one in particular, that of the four satellites in orbit around Jupiter, supported the Copernican theory in that it showed that there could be another centre of motion in the universe besides the Earth: if Jupiter, why not the Sun? Galileo now felt confident enough to advocate the theory, but the advance of new ideas was opposed, not for the first or last time, by established opinion, personified in Galileo's time by the ecclesiastical authorities in Rome. Eventually he was forced to renounce the Copernican theory, at least in public, and turn to less contentious subjects such as the "two new sciences" of his last and most important work.
    [br]
    Bibliography
    1610, Sidereus nuncius (Starry Messenger); translation by A.Van Helden, 1989, Sidereus Nuncius, or the Sidereal Messenger; Chicago: University of Chicago Press.
    1623, Il Saggiatore (The Assayer).
    1632, Dialogo sopre i due massimi sistemi del mondo, tolemaico e copernicano (Dialogue Concerning the Two Chief World Systems, Ptolemaic and Copernican); translation, 1967, Berkeley: University of California Press.
    1638, Discorsi e dimostrazioni matematiche intorno a due nuove scienzi attenenti alla
    meccanica (Dialogues Concerning Two New Sciences…); translation, 1991, Buffalo, New York: Prometheus Books (reprint).
    Further Reading
    G.de Santillana, 1955, The Crime of Galileo, Chicago: University of Chicago Press; also 1958, London: Heinemann.
    H.Stillman Drake, 1980, Galileo, Oxford: Oxford Paperbacks. M.Sharratt, 1994, Galileo: Decisive Innovator, Oxford: Blackwell.
    J.Reston, 1994, Galileo: A Life, New York: HarperCollins; also 1994, London: Cassell.
    A.Fantoli, 1994, Galileo: For Copemicanism and for the Church, trans. G.V.Coyne, South Bend, Indiana: University of Notre Dame Press.
    LRD

    Biographical history of technology > Galilei, Galileo

  • 15 Strutt, Jedediah

    SUBJECT AREA: Textiles
    [br]
    b. 26 July 1726 South Normanton, near Alfreton, Derbyshire, England
    d. 7 May 1797 Derby, England
    [br]
    English inventor of a machine for making ribbed knitting.
    [br]
    Jedediah Strutt was the second of three sons of William, a small farmer and maltster at South Normanton, near Alfreton, Derbyshire, where the only industry was a little framework knitting. At the age of 14 Jedediah was apprenticed to Ralph Massey, a wheelwright near Derby, and lodged with the Woollats, whose daughter Elizabeth he later married in 1755. He moved to Leicester and in 1754 started farming at Blackwell, where an uncle had died and left him the stock on his farm. It was here that he made his knitting invention.
    William Lee's knitting machine remained in virtually the same form as he left it until the middle of the eighteenth century. The knitting industry moved away from London into the Midlands and in 1730 a Nottingham workman, using Indian spun yarn, produced the first pair of cotton hose ever made by mechanical means. This industry developed quickly and by 1750 was providing employment for 1,200 frameworkers using both wool and cotton in the Nottingham and Derby areas. It was against this background that Jedediah Strutt obtained patents for his Derby rib machine in 1758 and 1759.
    The machine was a highly ingenious mechanism, which when placed in front of an ordinary stocking frame enabled the fashionable ribbed stockings to be made by machine instead of by hand. To develop this invention, he formed a partnership first with his brother-in-law, William Woollat, and two leading Derby hosiers, John Bloodworth and Thomas Stamford. This partnership was dissolved in 1762 and another was formed with Woollat and the Nottingham hosier Samuel Need. Strutt's invention was followed by a succession of innovations which enabled framework knitters to produce almost every kind of mesh on their machines. In 1764 the stocking frame was adapted to the making of eyelet holes, and this later lead to the production of lace. In 1767 velvet was made on these frames, and two years later brocade. In this way Strutt's original invention opened up a new era for knitting. Although all these later improvements were not his, he was able to make a fortune from his invention. In 1762 he was made a freeman of Nottingham, but by then he was living in Derby. His business at Derby was concerned mainly with silk hose and he had a silk mill there.
    It was partly his need for cotton yarn and partly his wealth which led him into partnership with Richard Arkwright, John Smalley and David Thornley to exploit Arkwright's patent for spinning cotton by rollers. Together with Samuel Need, they financed the Arkwright partnership in 1770 to develop the horse-powered mill in Nottingham and then the water-powered mill at Cromford. Strutt gave advice to Arkwright about improving the machinery and helped to hold the partnership together when Arkwright fell out with his first partners. Strutt was also involved, in London, where he had a house, with the parliamentary proceedings over the passing of the Calico Act in 1774, which opened up the trade in British-manufactured all-cotton cloth.
    In 1776 Strutt financed the construction of his own mill at Helper, about seven miles (11 km) further down the Derwent valley below Cromford. This was followed by another at Milford, a little lower on the river. Strutt was also a partner with Arkwright and others in the mill at Birkacre, near Chorley in Lancashire. The Strutt mills were developed into large complexes for cotton spinning and many experiments were later carried out in them, both in textile machinery and in fireproof construction for the mills themselves. They were also important training schools for engineers.
    Elizabeth Strutt died in 1774 and Jedediah never married again. The family seem to have lived frugally in spite of their wealth, probably influenced by their Nonconformist background. He had built a house near the mills at Milford, but it was in his Derby house that Jedediah died in 1797. By the time of his death, his son William had long been involved with the business and became a more important cotton spinner than Jedediah.
    [br]
    Bibliography
    1758. British patent no. 722 (Derby rib machine). 1759. British patent no. 734 (Derby rib machine).
    Further Reading
    For the involvement of Strutt in Arkwright's spinning ventures, there are two books, the earlier of which is R.S.Fitton and A.P.Wadsworth, 1958, The Strutts and the Arkwrights, 1758–1830, Manchester, which has most of the details about Strutt's life. This has been followed by R.S.Fitton, 1989, The Arkwrights, Spinners of Fortune, Manchester.
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (for a general background to the textile industry of the period).
    W.Felkin, 1967, History of the Machine-wrought Hosiery and Lace Manufactures, reprint, Newton Abbot (orig. pub. 1867) (covers Strutt's knitting inventions).
    RLH

    Biographical history of technology > Strutt, Jedediah

  • 16 De Forest, Lee

    [br]
    b. 26 August 1873 Council Bluffs, Iowa, USA
    d. 30 June 1961 Hollywood, California, USA
    [br]
    American electrical engineer and inventor principally known for his invention of the Audion, or triode, vacuum tube; also a pioneer of sound in the cinema.
    [br]
    De Forest was born into the family of a Congregational minister that moved to Alabama in 1879 when the father became President of a college for African-Americans; this was a position that led to the family's social ostracism by the white community. By the time he was 13 years old, De Forest was already a keen mechanical inventor, and in 1893, rejecting his father's plan for him to become a clergyman, he entered the Sheffield Scientific School of Yale University. Following his first degree, he went on to study the propagation of electromagnetic waves, gaining a PhD in physics in 1899 for his thesis on the "Reflection of Hertzian Waves from the Ends of Parallel Wires", probably the first US thesis in the field of radio.
    He then joined the Western Electric Company in Chicago where he helped develop the infant technology of wireless, working his way up from a modest post in the production area to a position in the experimental laboratory. There, working alone after normal working hours, he developed a detector of electromagnetic waves based on an electrolytic device similar to that already invented by Fleming in England. Recognizing his talents, a number of financial backers enabled him to set up his own business in 1902 under the name of De Forest Wireless Telegraphy Company; he was soon demonstrating wireless telegraphy to interested parties and entering into competition with the American Marconi Company.
    Despite the failure of this company because of fraud by his partners, he continued his experiments; in 1907, by adding a third electrode, a wire mesh, between the anode and cathode of the thermionic diode invented by Fleming in 1904, he was able to produce the amplifying device now known as the triode valve and achieve a sensitivity of radio-signal reception much greater than possible with the passive carborundum and electrolytic detectors hitherto available. Patented under the name Audion, this new vacuum device was soon successfully used for experimental broadcasts of music and speech in New York and Paris. The invention of the Audion has been described as the beginning of the electronic era. Although much development work was required before its full potential was realized, the Audion opened the way to progress in all areas of sound transmission, recording and reproduction. The patent was challenged by Fleming and it was not until 1943 that De Forest's claim was finally recognized.
    Overcoming the near failure of his new company, the De Forest Radio Telephone Company, as well as unsuccessful charges of fraudulent promotion of the Audion, he continued to exploit the potential of his invention. By 1912 he had used transformer-coupling of several Audion stages to achieve high gain at radio frequencies, making long-distance communication a practical proposition, and had applied positive feedback from the Audion output anode to its input grid to realize a stable transmitter oscillator and modulator. These successes led to prolonged patent litigation with Edwin Armstrong and others, and he eventually sold the manufacturing rights, in retrospect often for a pittance.
    During the early 1920s De Forest began a fruitful association with T.W.Case, who for around ten years had been working to perfect a moving-picture sound system. De Forest claimed to have had an interest in sound films as early as 1900, and Case now began to supply him with photoelectric cells and primitive sound cameras. He eventually devised a variable-density sound-on-film system utilizing a glow-discharge modulator, the Photion. By 1926 De Forest's Phonofilm had been successfully demonstrated in over fifty theatres and this system became the basis of Movietone. Though his ideas were on the right lines, the technology was insufficiently developed and it was left to others to produce a system acceptable to the film industry. However, De Forest had played a key role in transforming the nature of the film industry; within a space of five years the production of silent films had all but ceased.
    In the following decade De Forest applied the Audion to the development of medical diathermy. Finally, after spending most of his working life as an independent inventor and entrepreneur, he worked for a time during the Second World War at the Bell Telephone Laboratories on military applications of electronics.
    [br]
    Principal Honours and Distinctions
    Institute of Electronic and Radio Engineers Medal of Honour 1922. President, Institute of Electronic and Radio Engineers 1930. Institute of Electrical and Electronics Engineers Edison Medal 1946.
    Bibliography
    1904, "Electrolytic detectors", Electrician 54:94 (describes the electrolytic detector). 1907, US patent no. 841,387 (the Audion).
    1950, Father of Radio, Chicago: WIlcox \& Follett (autobiography).
    De Forest gave his own account of the development of his sound-on-film system in a series of articles: 1923. "The Phonofilm", Transactions of the Society of Motion Picture Engineers 16 (May): 61–75; 1924. "Phonofilm progress", Transactions of the Society of Motion Picture Engineers 20:17–19; 1927, "Recent developments in the Phonofilm", Transactions of the Society of Motion Picture Engineers 27:64–76; 1941, "Pioneering in talking pictures", Journal of the Society of Motion Picture Engineers 36 (January): 41–9.
    Further Reading
    G.Carneal, 1930, A Conqueror of Space (biography).
    I.Levine, 1964, Electronics Pioneer, Lee De Forest (biography).
    E.I.Sponable, 1947, "Historical development of sound films", Journal of the Society of Motion Picture Engineers 48 (April): 275–303 (an authoritative account of De Forest's sound-film work, by Case's assistant).
    W.R.McLaurin, 1949, Invention and Innovation in the Radio Industry.
    C.F.Booth, 1955, "Fleming and De Forest. An appreciation", in Thermionic Valves 1904– 1954, IEE.
    V.J.Phillips, 1980, Early Radio Detectors, London: Peter Peregrinus.
    KF / JW

    Biographical history of technology > De Forest, Lee

  • 17 Biro, Laszlo Joszef (Ladislao José)

    SUBJECT AREA: Paper and printing
    [br]
    b. 29 September 1899 Budapest, Hungary
    d. 24 October 1985 Buenos Aires, Argentina
    [br]
    Hungarian inventor of the ballpoint pen.
    [br]
    Details of Biro's early life are obscure, but by 1939 he had been active as a painter, a member of the Hungarian Academy of Sciences and an inventor, patenting over thirty minor inventions. During the 1930s he edited a cultural magazine and noticed in the printing shop the advantages of quick-drying ink. He began experimenting with crude ballpoint pens. The idea was not new, for an American, John Loud, had patented a cumbersome form of pen for marking rough surfaces in 1888; it had failed commercially. Biro and his brother Georg patented a ballpoint pen in 1938, although they had not yet perfected a suitable ink or a reservoir to hold it.
    In 1940 Biro fled the Nazi occupation of Hungary and settled in Argentina. Two years later, he had developed his pen to the point where he could seek backers for a company to exploit it commercially. His principal backer appears to have been an English accountant, Henry George Martin. In 1944 Martin offered the invention to the US Army Air Force and the British Royal Air Force to overcome the problems aircrews were experiencing at high altitudes with leaking fountain pens. Some 10,000 ballpoints were made for the RAF. Licences were granted in the USA for the manufacture of the "biro", and in 1944 the Miles-Martin Pen Company was formed in Britain and began making them on a large scale at a factory near Reading, Berkshire; by 1951 its workforce had grown to over 1,000. Other companies followed suit; by varying details of the pen, they avoided infringing the original patents. One such entrepreneur, Miles Reynolds, was the first to put the pen on sale to the public in New York; it is reputed that 10,000 were sold on the first day.
    Biro had little taste for commercial exploitation, and by 1947 he had withdrawn from the Argentine company, mainly to resume his painting, in the surrealist style. Examples of his work are exhibited in the Fine Arts Museum in Budapest. He created an instrument that had a greater impact on written communication than any other single invention.
    [br]
    Further Reading
    "Nachruf: Ladislao José Biro (1899–1985)", HistorischeBurowelt (1988) 21:5–8 (with English summary).
    J.Jewkes, The Sources of Invention, pp. 234–5.
    LRD

    Biographical history of technology > Biro, Laszlo Joszef (Ladislao José)

  • 18 Judson, Whitcomb L.

    SUBJECT AREA: Textiles
    [br]
    fl. 1891–1905 USA
    [br]
    American inventor of the zip fastener.
    [br]
    Whitcomb Judson was a mechanical engineer by profession. He filed his first patent application for a zip fastener in 1891 and took out a fifth in 1905. His invention was originally designed for shoes and consisted of separate fasteners with two interlocking parts which could be fastened either by hand or by a movable guide. In his last patent, he clamped the fastening elements to the edge of a fabric tape and patented a machine for manufacturing this. Through an earlier exploit, the Judson Pneumatic Street Railway Company, Judson knew Colonel Lewis Walker, who helped him to organize the Universal Fastener Company of Chicago to manufacture these fasteners, which at first were made by hand. One machine invented by Judson proved to be too complicated, but Judson's later fasteners were easier to adapt to machine production. The original company was reorganized as the Automatic Hook and Eye Company of Hoboken, New Jersey, and the new fasteners were sold under the name "C-curity". However, the garment manufacturers would not use them at first because the fasteners had defects, such as springing open at unexpected moments. The Automatic Hook and Eye Company brought in Gideon Sundback, who improved Judson's work and made the zip fastener successful.
    [br]
    Further Reading
    J.Jewkes, D.Sawyers and R.Stillerman, 1969, The Sources of Invention, 2nd edn, London (for an account of the invention).
    I.McNeil (ed.), 1990, An Encyclopaedia of the History of Technology, London: Routledge, pp. 852–3 (provides a brief account of fastenings).
    RLH

    Biographical history of technology > Judson, Whitcomb L.

  • 19 Morse, Samuel Finley Breeze

    SUBJECT AREA: Telecommunications
    [br]
    b. 27 April 1791 Charlestown, Massachusetts, USA
    d. 2 April 1872 New York City, New York, USA
    [br]
    American portrait painter and inventor, b est known for his invention of the telegraph and so-called Morse code.
    [br]
    Following early education at Phillips Academy, Andover, at the age of 14 years Morse went to Yale College, where he developed interests in painting and electricity. Upon graduating in 1810 he became a clerk to a Washington publisher and a pupil of Washington Allston, a well-known American painter. The following year he travelled to Europe and entered the London studio of another American artist, Benjamin West, successfully exhibiting at the Royal Academy as well as winning a prize and medal for his sculpture. Returning to Boston and finding little success as a "historical-style" painter, he built up a thriving portrait business, moving in 1818 to Charleston, South Carolina, where three years later he established the (now defunct) South Carolina Academy of Fine Arts. In 1825 he was back in New York, but following the death of his wife and both of his parents that year, he embarked on an extended tour of European art galleries. In 1832, on the boat back to America, he met Charles T.Jackson, who told him of the discovery of the electromagnet and fired his interest in telegraphy to the extent that Morse immediately began to make suggestions for electrical communications and, apparently, devised a form of printing telegraph. Although he returned to his painting and in 1835 was appointed the first Professor of the Literature of Art and Design at the University of New York City, he began to spend more and more time experimenting in telegraphy. In 1836 he invented a relay as a means of extending the cable distance over which telegraph signals could be sent. At this time he became acquainted with Alfred Vail, and the following year, when the US government published the requirements for a national telegraph service, they set out to produce a workable system, with finance provided by Vail's father (who, usefully, owned an ironworks). A patent was filed on 6 October 1837 and a successful demonstration using the so-called Morse code was given on 6 January 1838; the work was, in fact, almost certainly largely that of Vail. As a result of the demonstration a Bill was put forward to Congress for $30,000 for an experimental line between Washington and Baltimore. This was eventually passed and the line was completed, and on 24 May 1844 the first message, "What hath God wrought", was sent between the two cities. In the meantime Morse also worked on the insulation of submarine cables by means of pitch tar and indiarubber.
    With success achieved, Morse offered his invention to the Government for $100,000, but this was declined, so the invention remained in private hands. To exploit it, Morse founded the Magnetic Telephone Company in 1845, amalgamating the following year with the telegraph company of a Henry O'Reilly to form Western Union. Having failed to obtain patents in Europe, he now found himself in litigation with others in the USA, but eventually, in 1854, the US Supreme Court decided in his favour and he soon became very wealthy. In 1857 a proposal was made for a telegraph service across the whole of the USA; this was completed in just over four months in 1861. Four years later work began on a link to Europe via Canada, Alaska, the Aleutian Islands and Russia, but it was abandoned with the completion of the transatlantic cable, a venture in which he also had some involvement. Showered with honours, Morse became a generous philanthropist in his later years. By 1883 the company he had created was worth $80 million and had a virtual monopoly in the USA.
    [br]
    Principal Honours and Distinctions
    LLD, Yale 1846. Fellow of the Academy of Arts and Sciences 1849. Celebratory Banquet, New York, 1869. Statue in New York Central Park 1871. Austrian Gold Medal of Scientific Merit. Danish Knight of the Danneborg. French Légion d'honneur. Italian Knight of St Lazaro and Mauritio. Portuguese Knight of the Tower and Sword. Turkish Order of Glory.
    Bibliography
    E.L.Morse (ed.), 1975, Letters and Journals, New York: Da Capo Press (facsimile of a 1914 edition).
    Further Reading
    J.Munro, 1891, Heroes of the Telegraph (discusses his telegraphic work and its context).
    C.Mabee, 1943, The American Leonardo: A Life of Samuel Morse; reprinted 1969 (a detailed biography).
    KF

    Biographical history of technology > Morse, Samuel Finley Breeze

  • 20 Armstrong, Edwin Howard

    [br]
    b. 18 December 1890 New York City, New York, USA
    d. 31 January 1954 New York City, New York, USA
    [br]
    American engineer who invented the regenerative and superheterodyne amplifiers and frequency modulation, all major contributions to radio communication and broadcasting.
    [br]
    Interested from childhood in anything mechanical, as a teenager Armstrong constructed a variety of wireless equipment in the attic of his parents' home, including spark-gap transmitters and receivers with iron-filing "coherer" detectors capable of producing weak Morse-code signals. In 1912, while still a student of engineering at Columbia University, he applied positive, i.e. regenerative, feedback to a Lee De Forest triode amplifier to just below the point of oscillation and obtained a gain of some 1,000 times, giving a receiver sensitivity very much greater than hitherto possible. Furthermore, by allowing the circuit to go into full oscillation he found he could generate stable continuous-waves, making possible the first reliable CW radio transmitter. Sadly, his claim to priority with this invention, for which he filed US patents in 1913, the year he graduated from Columbia, led to many years of litigation with De Forest, to whom the US Supreme Court finally, but unjustly, awarded the patent in 1934. The engineering world clearly did not agree with this decision, for the Institution of Radio Engineers did not revoke its previous award of a gold medal and he subsequently received the highest US scientific award, the Franklin Medal, for this discovery.
    During the First World War, after some time as an instructor at Columbia University, he joined the US Signal Corps laboratories in Paris, where in 1918 he invented the superheterodyne, a major contribution to radio-receiver design and for which he filed a patent in 1920. The principle of this circuit, which underlies virtually all modern radio, TV and radar reception, is that by using a local oscillator to convert, or "heterodyne", a wanted signal to a lower, fixed, "intermediate" frequency it is possible to obtain high amplification and selectivity without the need to "track" the tuning of numerous variable circuits.
    Returning to Columbia after the war and eventually becoming Professor of Electrical Engineering, he made a fortune from the sale of his patent rights and used part of his wealth to fund his own research into further problems in radio communication, particularly that of receiver noise. In 1933 he filed four patents covering the use of wide-band frequency modulation (FM) to achieve low-noise, high-fidelity sound broadcasting, but unable to interest RCA he eventually built a complete broadcast transmitter at his own expense in 1939 to prove the advantages of his system. Unfortunately, there followed another long battle to protect and exploit his patents, and exhausted and virtually ruined he took his own life in 1954, just as the use of FM became an established technique.
    [br]
    Principal Honours and Distinctions
    Institution of Radio Engineers Medal of Honour 1917. Franklin Medal 1937. IERE Edison Medal 1942. American Medal for Merit 1947.
    Bibliography
    1922, "Some recent developments in regenerative circuits", Proceedings of the Institute of Radio Engineers 10:244.
    1924, "The superheterodyne. Its origin, developments and some recent improvements", Proceedings of the Institute of Radio Engineers 12:549.
    1936, "A method of reducing disturbances in radio signalling by a system of frequency modulation", Proceedings of the Institute of Radio Engineers 24:689.
    Further Reading
    L.Lessing, 1956, Man of High-Fidelity: Edwin Howard Armstrong, pbk 1969 (the only definitive biography).
    W.R.Maclaurin and R.J.Harman, 1949, Invention \& Innovation in the Radio Industry.
    J.R.Whitehead, 1950, Super-regenerative Receivers.
    A.N.Goldsmith, 1948, Frequency Modulation (for the background to the development of frequency modulation, in the form of a large collection of papers and an extensive bibliog raphy).
    KF

    Biographical history of technology > Armstrong, Edwin Howard

См. также в других словарях:

  • Invention of radio — Great Radio Controversy redirects here. For the album by the band Tesla, see The Great Radio Controversy. Contents 1 Physics of wireless signalling 2 Theory of electromagnetism …   Wikipedia

  • Textile manufacture during the Industrial Revolution — With the establishment of overseas colonies, the British Empire at the end of the 17th century/beginning of the 18th century had a vast source of raw materials and a vast market for manufactured goods. The manufacture of goods was performed on a… …   Wikipedia

  • Dudd Dudley — Dudd (Dud) Dudley (1600 ndash; 1684), was an English metallurgist, who fought on the Royalist side in the English Civil War as a soldier, military engineer, and supplier of munitions. He was one of the first Englishmen to smelt iron ore with coke …   Wikipedia

  • Dud Dudley — Contents 1 Background and early life 2 Ironmaster 2.1 The Great Mayday Flood …   Wikipedia

  • patent — pat·ent 1 / pat ənt3 also pāt / adj [Anglo French, from Latin patent patens, from present participle of patēre to be open] 1 a: open to public inspection see also letters patent at letter 2 …   Law dictionary

  • Ownership — Own redirects here. For other uses, see OWN (disambiguation). For ownership of articles in Wikipedia, see Wikipedia:Ownership of articles …   Wikipedia

  • Patentability — Within the context of a national or multilateral body of law, an invention is patentable if it meets the relevant legal conditions to be granted a patent. By extension, patentability also refers to the substantive conditions that must be met for… …   Wikipedia

  • patent — The grant of an exclusive right to exploit an invention. In the UK patents are granted by the Crown through the Patent Office, which is part of the Department of Trade and Industry. An applicant for a patent (usually the inventor or the inventor… …   Accounting dictionary

  • patent — The grant of an exclusive right to exploit an invention. In the UK patents are granted by the Crown through the Patent Office, which is part of the Department of Trade and Industry. An applicant for a patent (usually from the inventor or the… …   Big dictionary of business and management

  • Karl Drais — c. 1820, then still a baron Karl von Drais on his original Laufmaschine, the earliest two …   Wikipedia

  • Timeline of steam power — See Steam engine, Steam power during the Industrial Revolution. Steam power developed slowly over a period of several hundred years, progressing through expensive and fairly limited devices in the early 1600s, to useful pumps for mining in 1700,… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»